
359

Lexicon Creator: A Tool for Building Lexicons
for Proofing Tools and Search Technologies

Thierry Fontenelle
Nick Cipollone
Mike Daniels
Ian Johnson

Microsoft Corporation

In this paper, we describe Lexicon Creator, a tool designed to help developers produce
lexical data for its use in a variety of linguistic applications such as spell-checkers, word-
breakers, thesauri, etc. The tool enables developers to work on existing wordlists derived
either directly from corpora or from previously created wordlist data. The key feature of
the tool is that it enables linguists to rapidly create the morphological rules that are
necessary to generate all the inflected forms of a given item. In many languages, a given
word may have many forms, each distinguished by different endings attached to the stem of
the word. A language like English is rather simple, morphologically-the verb walk only has
the following forms: walk, walks, walked, walking, while other languages may have a
number of different forms for a word. Yet, it is essential to create lexicons that can
recognize and generate all the inflected forms of a given word, especially for applications
such as spell-checkers-where overgeneration should be avoided, thesauri, grammar
checkers, morphological analyzers/generators, speech recognition, and handwriting
recognizers. It would be extremely time-consuming to code each of these forms
individually, so it is necessary to develop this data more efficiently. Lexicon Creator
allows linguists to classify these variations of the same word into templates, or
morphological classes, which allow the automatic generation of all valid forms of a
word. Once the templates describing the aforementioned variations have been defined,
the data-coding task consists of assigning an input word to the correct template and
checking that the forms generated automatically are valid. The article will also focus on
the additional types of linguistic information which can be attached to words, depending
on the intended application that will use the resulting full-form lexicon.

Introduction

Applications such as spell-checkers, morphological analyzers or handwriting recognizers rely
upon large lexicons with varying degrees of linguistic information attached to the lexical items.
In the case of spell-checkers or handwriting recognizers, one straightforward way of
approaching the lexicon issue is to say that a list of all valid word forms is sufficient, which
means that the lexicon should be as large as possible and should include all the word forms one
would expect the tool to verify (i.e. accept and possibly suggest, in the case of a spell-checker).
While this may be true for many languages in theory, it says nothing about how this list of
possible word forms should be created. Knowledge of the morphological rules of a language is
of course essential and care should be exercised when implementing these rules to avoid the
overrecognition issues which are commonly found in NLP applications geared towards the
analysis of unknown words. Fontenelle (2004) shows how careful the creators of spellers should
be to avoid producing analyses for words which are spelling mistakes (e.g. conu being
potentially analyzed as co+nu �co-naked� when the intended French word is connu, or transfer
being potentially analyzed as trans+fer �transiron� when the correct spelling in French should
be transfert). One solution we adopted for building the lexicons that underlie spell-checking
technology and stemmers used in some search engines is to store lemmas together with their
inflected forms in our lexicons. This means that we need to be able to generate all and only the

T. Fontenelle, N. Cipollone, M. Daniels, I. Johnson

 360

possible correct forms, which requires in-depth descriptions of the morphological rules of a
language.

Building full-form lexicons

Compared to many other languages, English has a relatively impoverished morphological
system. Nouns typically form their plurals by adding -s or -es (after a sibilant) and have a nearly
non-existent case system, the genitive being the only remnant of such a system (the president�s
decision). This means that a given noun normally has 4 distinct forms (e.g. dog, dogs, dog�s,
dogs�). Verbs traditionally have 4 or 5 distinct forms (work, works, worked, working; eat, eats,
eating, ate, eaten). It would be extremely time-consuming to list all these forms and add them to
the lexicon individually, which is why we have developed a tool, Lexicon Creator, that enables
linguists to author the morphological rules of a given language and facilitates the generation of
inflected forms. Lexicon Creator allows linguists to classify variations of a given word into
templates, which correspond to morphological classes. Once the templates have been defined,
the data-coding process basically consists of associating a word to its correct template and
checking that all the possible inflected forms of this word are generated (and only these
inflected forms, if one wants to avoid overgeneration). If a template includes the rules that are
necessary to create the distinct forms of a verb like work (infinitive = base form; 3rd person
singular = +s; past tense = +ed; present participle/gerund = +ing), it will then be sufficient to
associate other verbs such as walk, talk, bark, crack� with the same template to automatically
add inflected forms such as walks, talked, barking or cracked to the lexicon, without having to
manually list them.

Authoring morphological rules

Lexicon Creator provides a powerful authoring environment which enables the linguist to create
sometimes very complex morphological rules, using regular expression patterns,
character/string classes and functions which have made it possible to describe the inflectional
system of over 40 languages, including Romance, Germanic, Scandinavian, Uralic, Semitic,
African, Indic and Asian languages. Phenomena like gemination (En. big � bigger), vowel
changes (Ge. Buch � Bücher), stem changes (Fr. venir � viens) can be expressed easily via
functions which encode transformations consisting of patterns and replacements. Gemination of
final consonants can be expressed as follows, for instance:

Patterns appear to the left of the arrow and replacements appear to the right of the arrow.
GeminateCons (e.g. travel ! travell):
(.*<:vowel:>)(<:gemcons:>) ! (1)(2)(2)

 This function matches zero or more characters (.*) followed by a vowel and a consonant and
returns the same initial sequence of characters followed by the same vowel followed by two
occurrences of the consonant. <:vowel:> has been defined as a string class consisting of all
vowels. <:gemcons:> has been defined as a string class consisting of all geminating consonants
(b, d, g, k, l, m, n, p, r, t).

Once such a function has been defined, it can be used in writing the rules that can generate the
inflected forms that undergo gemination for a class of verbs that includes stop, blog, dot, flip�
A rule which forms the past tense would then look like this:

(GeminateCons<1>)ed
which can be read as follows: the GeminateCons function applies to Stem #1 and the suffix �ed�
is added to the output of that function. Assuming that the stem is stop, the intermediate
geminated form will be stopp and the final inflected form generated by this rule will be stopped.
The same function would be useful to create rules for adjectives that double their final
consonant (big � bigger, dim � dimmer�). It will be used in English but also in languages like
Dutch, where gemination is also fairly common (dun � dunner; kat � katten). It should also be
noted that there need to be (at least) two distinct templates, one for words that cannot undergo

Section 1. Computational Lexicography and Lexicology

 361

gemination, and one for items that do (compare stop and develop, the former undergoing
gemination in stopped, unlike the latter � developed).

Adding entries to the lexicon

In our context, lexical acquisition means adding words to the lexicon, which boils down to
assigning a template to a lexical entry so that all the correct inflected forms can be generated
and stored in the lexicon. The lexicographer using Lexicon Creator can use a word list as a
source of lexical data. Powerful sorting and filtering functionalities make it easy to target
specific subsets of the word list or to sort it as a function of various criteria, for instance in
increasing or decreasing order of frequency (if the list includes word forms extracted from a
large corpus with frequencies of occurrences). Because the ending of a word can traditionally be
used as a clue to the morphological properties of a lexical item, it is also possible to sort the
word forms in reverse alphabetical order, which groups words that have a common ending. For
instance, whisky and baby should be assigned to the same template since they both have a plural
in �ies (whiskies, babies); similarly, easy and happy are similar insofar as they both have the
same types of comparatives and superlatives (happier/happiest, easier/easiest). Words that share
common morphological properties can be grouped together and bulk-imported via a dynamic
user interface which guides the user through a series of menus to choose the appropriate
template classes, templates and inflected form slot names to which these words should be
assigned.

An �Analyses� window presents the list of possible ways of analyzing a given word form which
are ordered according to how closely the word matches a particular pattern (the highest ranking
match appearing at the top of the list). This window helps pick the correct template. The choice
can be complicated by the multiplicity of templates in a language, especially when that language
is morphologically richer than English. The languages for which we have created template
lexicons with Lexicon Creator typically have several dozen morphological classes for nouns,
adjectives and verbs and it is not always easy to choose the correct template which will generate
the correct inflected forms of a given lemma. To facilitate the lexical acquisition process, the
lexicographer can select multiple entries in the Word List panel, sort them and filter them
according to various linguistic criteria and bulk-assign them to a given template when she is
100% sure (see screenshot below). In addition to these powerful functionalities, the tool also
includes interactive lexicon merging and comparison features, which make it possible to
compare two versions of the same lexicon and to merge changes made by different users.

Affix management via subtemplates

Templates can be viewed as either highly structured entities or as flat tables. In order to capture
morphological redundancies, templates can have an internal substructure which allows for the
management of regular affixes attached to inflected forms. Such substructures are intended to be
used in languages where multiple, individually-separable affixes can attach to a single word in a
�chain�. By representing each affix as a separate data structure, linguists can build up structured
templates that encode all possible affix combinations without having to enter and maintain
multiple copies of the same information. Subtemplates can be embedded in the rules tree of a
given template to specify how affixes are realized in different environments. In French, clitics -
ci and -là are deictic locative adverbs corresponding to �here� and �over there� (cet ordinateur-
ci �this computer here� vs. cet ordinateur-là �that computer over there�) that can be attached
(with a hyphen) to singular and plural forms of any noun. We can therefore define a general
class of affixes for these deictic adverbs (subtemplates can also be used for non-hyphenated
clitics, as in Spanish with dámelo �give it to me� or dame �give me�, for instance).

T. Fontenelle, N. Cipollone, M. Daniels, I. Johnson

 362

Lexicon Creator�s panels

Lexicon Creator has four main panels, as shown in the screenshot below:

- Word List: this panel allows the lexicographer to load an external list of words (with
optional frequencies) and view, sort and filter this list in a number of ways. The words
from a corpus used as a source to populate our lexicons will typically be displayed and
manipulated in this panel. Powerful filtering functionalities enable the lexicographer to
quickly identify words which are or are not already in the lexicon, words which end in a
given suffix, and even words which can be analyzed as valid compounds by the
dynamic compounding module described below.

- Analyses: When a word is selected from the word list, it is automatically copied to the
�current word� textbox in the toolbar. The system then generates a list of possible
templates to which this word can be assigned. This list of possible analyses is presented
in the Analyses window and is ordered according to how closely the word matches a
particular pattern. If the word is in the lexicon, its actual analyses (the lexical entry or
entries the word is associated with) are displayed at the top. On the basis of the
information presented in this panel, the lexicographer can select the template that seems
most likely to provide a correct description of all forms of the input word. When she
clicks on the template she thinks is correct for this analysis, Lexicon Creator shows the
word selected in the Template/Lexical Entry Details panel with all inflected forms
generated by applying the rules defined when the template was created. She can then
verify that the list of stem forms and inflected forms is correct.

The tool is able to quickly locate inflected forms without having to fully generate the
list via an inflected form indexer which allows us to interact with even enormous (multi-
billion-word) lexicons without using much memory. In the example below, the Dutch
adjective dikker is in the lexicon and the actual analysis indicates that it is associated
with the lemma dik �big� assigned to the template ADJECTIVE-
REGULAR.Geminate.dik.

- Lexical Entries: This panel displays the entries of the template lexicon. By default, it
shows three columns: the lexical entries, together with the template which is assigned to
them and the stem values.

Section 1. Computational Lexicography and Lexicology

 363

- Template/Lexical Entry Details: This panel allows the lexicographer to review the
forms which are generated when a given lexical entry is associated to a particular
template, accessible from a drop-down menu. If the template generates all the correct
forms for the word, segmentation information for compounds can be added if applicable
and necessary, and the word can be added to the lexicon. In the example below, the form
dikker in Slot #4 is the comparative of the adjective dik, which has other possible inflected
forms: dikke, diks, dikkere, dikst, dikste. The rule applied to generate comparatives for that
template makes use of the GeminateCons function which ensures that the final consonant
is doubled before the comparative suffix �er is added (dik-k-er).

Words that are already in the lexicon appear in the Word List with a green checkmark. Working
with corpus data to derive word lists forces the lexicographer to consider the normalization
strategies she would like to use. Since word lists extracted from corpora can include capitalized
and non-capitalized versions of the same word (drink vs. Drink; john vs. John vs. JOHN...), the
lexicographer may want to know which forms are covered by her lexicon by using the concept
of Extended Actual Analyses. A purple approximately equal (≈) sign appears next to words
whose �extended actual analysis� is in the lexicon, i.e. words whose normalization is in the
lexicon (DRINK or Drink would get this symbol if drink is in the lexicon). The same system is
used to display the possible analyses of an input string, and it is possible for a given string to be
analyzed in multiple ways, resulting in multiple word-template pairs, as in the following
example illustrating the analyses of Bond:

T. Fontenelle, N. Cipollone, M. Daniels, I. Johnson

 364

The string Bond can correspond to the proper noun (James) Bond; the approximately equal sign
indicates that Bond has an extended actual analysis (normalization) which is in the lexicon (both
as a verb entry and as a regular noun entry).

Annotating lexical entries

The main purpose of Lexicon Creator is to be able to associate a lemma to all its valid inflected
forms, using the concept of template or morphological classes. It is possible to enrich the lexical
data, however, by annotating lexical entries or their inflected forms with linguistic attributes. In
addition to part of speech information, the data can be annotated with information that can be
consumed by applications such as spell-checkers, thesauri, morphological analyzers,
handwriting recognizers, viz:

- Dialect/regional distinctions (e.g. US vs. UK vs. Canadian vs. Australian English�; old
vs. new spelling for languages that have undergone a spelling reform, like French,
German or Dutch; such information is crucial to ensure that the reform settings selected
by the user of Microsoft Office spellers, if any, produce the desired results, as is shown
in Fontenelle 2006)

- frequency information

- levels of formality (offensive words may undergo a special treatment in a speller)

- linking spelling variants (for query expansion in search engines, which need to know
that a form like produkt in Dutch is the old spelling of what should now be written
product after the 2005 spelling reform; similarly, the French words ile and île can be
linked as spelling variants for search technologies)

- compound segmentation (for compounding languages, knowing where a lexicalized
compound should be segmented is crucial in order for a word-breaker to be able to emit
the correct segments in a search and indexing perspective)

- synonyms (for thesauri)

- number, person, tense, gender, transitivity information, etc.

Any type of linguistic information that can be useful for NLP, including text mining or
classification schemes, can be added via flexible annotation schemas.

Depending upon the type of application the linguist is developing, she will have to create an
annotation schema which defines the additional types of information (annotations) she would
like to be able to use. Once an annotation schema has been defined with the Annotation Schema
Editor, she can then load the schema, associate it with a lexicon and start annotating the data,
which means that sets of attribute-value pairs can be attached to lexicon objects. A schema
associated with a lexicon is embedded as a resource inside a template lexicon. Schemas can be
modified and upgraded (for instance when a given application requires a new type of linguistic
information, which needs to be added to an existing schema).

Any kind of lexicon object can be annotated: template classes or templates, lemmas (lexical
entries), individual inflected forms, or even slots corresponding to inflected forms associated
with a given part of speech (e.g. one might decide to annotate all inflected forms corresponding
to a Past Subjunctive in French as Frequency=Low, for instance). Because annotations can be
assigned at various levels, it has been necessary to develop a system of �cascading annotations�.
This system interprets annotations by assigning a total order on objects in the lexicon and
defining rules for annotation overriding and inheritance. Annotations �cascade� from a higher
lexicon object to a lower one and lower values on the cascade override higher values. For
instance, a noun inflection might have Restricted=Archaic set at the template class slot level,
with that inflection set to Restricted=None at the (lower) inflected form level of a few words
where the inflection is still commonly used.

In the example below, which illustrates the cascading annotations of the French plural word form
iles, one can see that the annotation Number=Plur is inherited from a Slot called Plur (the value

Section 1. Computational Lexicography and Lexicology

 365

Plural cannot be inherited from the lemma (Lexical Entry) ile, unlike the Gender attribute, which is
assigned at the lexical entry level and percolates down to all the inflected forms associated with this
lemma). Similarly, the Part of speech (POS) type �Noun� is inherited from the attribute-value pair
POSType=Noun assigned to the Template Class NOUN.

Dynamic compounding

The tool also allows the lexicographer to define legal compound structures for compounding
languages. Information about whether a given word form can act as an initial, medial or final
segment in a compound can also be stored in the lexicon to make sure that the speller handles
dynamic compounding. This is crucial for compounding languages such as German, Dutch,
Swedish, Norwegian or Danish, since it is impossible to lexicalize all possible compounds. A
dynamic recognition mechanism is therefore necessary to make sure creative (non-lexicalized)
but valid compounds do not get flagged by a spell-checker. The linguist can experiment with
compound analysis and visualize the results in the Analyses panel to simulate the behavior of
the speller engine. The following screenshot illustrates the Norwegian Nynorsk word
inspeksjonsarbeid, which is not in the lexicon and gets 2 possible compound analyses according
to the segmentation rules of the language. A big blue + sign signals the existence of compound

T. Fontenelle, N. Cipollone, M. Daniels, I. Johnson

 366

analysis. Analyses with fewer segments (which are a priori better analyses) are displayed first.
The analysis shows that this non-lexicalized compound is analyzed as the noun inspeksjon
followed by the noun arbeid.

Dynamic compounding logic can be defined directly in the template lexicon. Declarative
descriptions of legal compound structures are entered via an editor: these �segment rules� are in
fact regular expressions over literal characters and classes of entries in the lexicon. The classes
are defined by �segmentation bits�, which are present on every runtime lexicon entry. Encoding
dynamic compounding for a language thus reduces to:

1. deciding what classes of lexical entries there need to be;

2. writing the correct segment rules to combine these classes of lexical entries;

3. populating the lexical entry classes appropriately � in other words, assigning the
segmentation bits.

One such rule in Norwegian could stipulate that valid compound structures have the form
<Seg1><Seg2>*<Seg3>, which means that valid compounds are made up of an initial segment
Seg1 followed by 0, 1 or more medial segments marked as Seg2 followed by a final segment
marked as Seg3. In the example given above, this means that the inflected form inspeksjons will
need to be annotated as Seg1 (like all word forms that can be initial segments) and arbeid will
need to be annotated as Seg3 in the lexicon (like all word forms that can be a final segment).
These segmentation annotations would of course be annotated on the most general applicable
level, often the template class slot level, to then cascade down to the individual inflected forms.
The runtime engine driving the spell-checker will include the same logic to determine the valid
compound patterns and flag those compounds that are not permitted by this logic. In addition to
the definition of segment classes, Lexicon Creator also makes it possible to configure rules
according to the number of segments that can enter a valid compound, as well as to the length of
segments (e.g. for a given language, the linguist might specify that each segment should be at
least 3 characters long) or the minimum length of a non-lexicalized compound.

Derivational morphology

Lexicon Creator provides functionality to capture phenomena related to derivational
morphology, which creates new words (usually, though not necessarily, of a different part of
speech) by adding a bound morpheme to a base form. For example:

Adj → Adv in -ly: quick → quickly
Adj → Verb in -en: bright → brighten

A flexible environment enables the linguist to create derivational rules and to specify constraints
allowing or blocking the application of these rules to limit overgeneration. One could for
instance indicate that a given rule applies only if the source lexical entry is not tagged as Vulgar.

Section 1. Computational Lexicography and Lexicology

 367

Each derivational rule consists of three parts:

1. constraints on the source lexical entries (the left-hand side of the rule)

2. output lexical entry specifications (the right-hand side of the rule)

3. the rule�s application mode

Constraints can be expressed via powerful filtering mechanisms using regular expressions and
annotations. A rule that would generate adverbs in -ment in French could for instance constrain
its application to the feminine singular form of adjectives (public → Fem. publique → Adv.
publiquement; fier → Fem. fière → Adv. fièrement). The resulting entries (output of the
derivational rule) can be specified through a set of stem mapping rules based on stems or on
slots corresponding to an inflected form (e.g. Slot3(ment) if Slot3 corresponds to the feminine
singular form of an adjective). Annotations can also be automatically attached to the output of a
rule (e.g. specifying a given gender for all the derived forms produced by a given rule).

Three rule modes can be chosen to specify how the rule should be applied:

- OptIn: the rule does not apply by default but can be turned on

- OptOut: the rule applies by default, but can be turned off

- Obligatory: the rule applies by default and cannot be turned off

For the first two modes, the linguist must specify where the rule applies (or where it does not
apply) while obligatory rules apply without exception to all lexical entries admitted by their
filters. In the case of the French rule referred to above, for instance, it would be necessary to
block the derived form brèvement (bref → Fem. brève), since the adjective brièvement (briefly)
is used instead.

Inflected form filters and lexicon scanning

Building a generic lexicon for multiple applications comes with a set of challenges from a
lexicon management perspective. One of the crucial questions is how to store multiple, partially
overlapping versions of lexicon codes and attribute-value pairs in a single lexicon so that
different clients of the lexicon (i.e. applications that use it) can retrieve different versions
without having one client�s requirements pollute the shared, generic lexicon. To solve that issue,
we have implemented a declarative interface layer in the lexicon that translates mappings
between client notions and lexicon structure. Sets of named inflected form filters can be used to
define sets of part of speech tags, syntactic or semantic bits, etc., that will persist in the
template lexicon for various applications. A specialized UI has been included for such cases.
For a specific application, for instance, it might be useful to a create a particular POS tag set
which maps masculine singular past participles (found in a verbal template) onto an
Adjective_Masculine_Singular tag, without having to specifically annotate these verb forms
as adjectives. The specific tag set would be used by a thesaurus, for instance, while another
application would preserve the distinction between verbs and adjectives. The named filter set
would then only be exposed to the applications that need it.

The lexicographer can scan inflected forms. It is possible to look for words whose inflected
forms match a given criterion, using standard regular expressions. A lexicographer working on
an English full-form lexicon might want to use this function to carry out a consistency check
and see whether the lexicon includes inflected forms ending in -shs or -chs, for instance. This
could point to mistakes that need to be corrected (e.g. *watchs).

Another potential application of such a scan is to find whether prefixes or suffixes have been
used in template rules with a different script than the one used for dictionary forms. For
instance, in a lexicon using the Cyrillic script, one might want to identify possible mistakes in
words for which Latin characters might have been used erroneously in suffixes or prefixes.

This scanning functionality can be used to carry out consistency checks, study the distribution
of some linguistic phenomena and browse the lexicon in an opportunistic mode. Filters on

T. Fontenelle, N. Cipollone, M. Daniels, I. Johnson

 368

inflected forms can be defined via a dialog box which automatically builds regular expressions
for the user, as in the screenshot below, which illustrates a query to list inflected forms which
correspond to a Pastpart slot (=past participle) ending in -med or -ped ([mp]ed$) and which use
a function to double the final consonant of the lemma (in this example, this function is called
CDoubling4V). Such a query will generate word forms such as snapped, capped, chipped,
chopped, brimmed, dimmed, unzipped, worshipped�

Conclusion

Dictionary writing systems are increasingly used to compile dictionaries from corpus data (see,
for instance, Joffe and de Schryver 2004). As noted by Kilgarriff (2005b), �a dictionary is a
highly structured document and an entry typically contains a headword, pronunciation and part
of speech code, optional labels and information about inflectional class and morphological and
spelling variants, then a sequence of senses, each with definition or translation and optional
examples. Each of these is a different information field.� Lexicon Creator, as described in this
paper, shares a number of features with some off-the-shelf dictionary writing systems and it can
handle linguistic phenomena from a wide variety of languages, including Romance, Germanic,
Slavonic, Scandinavian, Indic, Asian, African, Uralic, and Semitic languages. Its unique feature
is its ability to allow lexicographers and non-experts in computational linguistics to author the
morphological rules of a language and to create (and store) lexical entries together with all their
inflected forms, a crucial functionality for applications such as spell-checkers, thesauri, and
stemmers for search engines, speech and handwriting recognition systems, which require
specific linguistic information about inflected forms, and not just about lexical entries.

Section 1. Computational Lexicography and Lexicology

 369

References

Fontenelle, T. (2004). �Lexicalization for proofing tools�. In Williams, G.; Vessier, S. (eds.)
Proceedings of the 11th Euralex International Congress. Lorient: Université de Bretagne-
Sud. 79-86.

Fontenelle, T. (2006). �Developing a Lexicon for a new French Spell-checker�. In Corino, E.;
Marello, C.; Onesti, C. (eds.) Proceedings of the XIIth EURALEX International Congress.
Turin: Università di Torino. 151-158.

Joffe, D.; Schryver, G. M. de. (2004). �TshwaneLex, a state-of-the-art dictionary compilation
program�. In Williams, G.; Vessier, S. (eds.) Proceedings of the 11th Euralex International
Congress. Lorient: Université de Bretagne-Sud. 99-104.

Kilgarriff, A. (2005a). �Informatique et Dictionnairique�. Numéro spécial de la Revue
Française de Linguistique Appliquée (RFLA) sur les dictionnaires 10 (2). 95-102.

Kilgarriff, A. (2005b). �Use of Computers in Lexicography�. In Encyclopedia of Language and
Linguistics. Oxford: Elsevier.

